Mostrar el registro sencillo del ítem

dc.contributor.author
Ibarrola, Francisco Javier  
dc.contributor.author
Di Persia, Leandro Ezequiel  
dc.contributor.author
Spies, Ruben Daniel  
dc.date.available
2019-10-23T19:59:28Z  
dc.date.issued
2018-10  
dc.identifier.citation
Ibarrola, Francisco Javier; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation; Elsevier Science; Signal Processing; 151; 10-2018; 89-98  
dc.identifier.issn
0165-1684  
dc.identifier.uri
http://hdl.handle.net/11336/87159  
dc.description.abstract
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a Bayesian approach based on convolutive nonnegative matrix factorization that uses prior distributions in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested.Comparisons of the results against those obtained with state-of-the-art methods are presented, showing significant improvement.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Signal processing  
dc.subject
Dereverberation  
dc.subject
Regularization  
dc.subject
Signal processing  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:46:31Z  
dc.journal.volume
151  
dc.journal.pagination
89-98  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Ibarrola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Signal Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0165168418301518  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sigpro.2018.04.024