Mostrar el registro sencillo del ítem
dc.contributor.author
Ibarrola, Francisco Javier
dc.contributor.author
Di Persia, Leandro Ezequiel
dc.contributor.author
Spies, Ruben Daniel
dc.date.available
2019-10-23T19:59:28Z
dc.date.issued
2018-10
dc.identifier.citation
Ibarrola, Francisco Javier; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation; Elsevier Science; Signal Processing; 151; 10-2018; 89-98
dc.identifier.issn
0165-1684
dc.identifier.uri
http://hdl.handle.net/11336/87159
dc.description.abstract
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a Bayesian approach based on convolutive nonnegative matrix factorization that uses prior distributions in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested.Comparisons of the results against those obtained with state-of-the-art methods are presented, showing significant improvement.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Signal processing
dc.subject
Dereverberation
dc.subject
Regularization
dc.subject
Signal processing
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T17:46:31Z
dc.journal.volume
151
dc.journal.pagination
89-98
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Ibarrola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Signal Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0165168418301518
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sigpro.2018.04.024
Archivos asociados