Artículo
A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation
Fecha de publicación:
10/2018
Editorial:
Elsevier Science
Revista:
Signal Processing
ISSN:
0165-1684
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a Bayesian approach based on convolutive nonnegative matrix factorization that uses prior distributions in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested.Comparisons of the results against those obtained with state-of-the-art methods are presented, showing significant improvement.
Palabras clave:
Signal processing
,
Dereverberation
,
Regularization
,
Signal processing
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Ibarrola, Francisco Javier; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation; Elsevier Science; Signal Processing; 151; 10-2018; 89-98
Compartir
Altmétricas