Mostrar el registro sencillo del ítem
dc.contributor.author
Luna, Martín Francisco
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2019-10-23T01:41:30Z
dc.date.issued
2018-01
dc.identifier.citation
Luna, Martín Francisco; Martínez, Ernesto Carlos; Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes; Elsevier B.V.; Computer Aided Chemical Engineering; 43; 1-2018; 943-948
dc.identifier.issn
1570-7946
dc.identifier.uri
http://hdl.handle.net/11336/87044
dc.description.abstract
For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier B.V.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BAYESIAN OPTIMIZATION
dc.subject
END-USE PRODUCT PROPERTIES
dc.subject
GAUSSIAN PROCESSES
dc.subject
ONE-CLASS CLASSIFICATION
dc.subject
SCALE-UP
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T18:00:04Z
dc.journal.volume
43
dc.journal.pagination
943-948
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Computer Aided Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-444-64235-6.50166-2
Archivos asociados