Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes

Luna, Martín FranciscoIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 01/2018
Editorial: Elsevier B.V.
Revista: Computer Aided Chemical Engineering
ISSN: 1570-7946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

For innovative products, the issue of reproducibly obtaining their desired end-use properties at industrial scale is the main problem to be addressed and solved in process development. Lacking a reliable first-principles process model, a Bayesian optimization algorithm is proposed. On this basis, a short of sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization is able to take advantage of the full information provided by the sequence of experiments made using a probabilistic model (Gaussian process) of the probability of success based on a one-class classification method. The metric which is maximized to decide the conditions for the next experiment is designed around the expected improvement for a binary response. The proposed algorithm's performance is demonstrated using simulation data from a fed-batch reactor for emulsion polymerization of styrene.
Palabras clave: BAYESIAN OPTIMIZATION , END-USE PRODUCT PROPERTIES , GAUSSIAN PROCESSES , ONE-CLASS CLASSIFICATION , SCALE-UP
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 800.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87044
DOI: http://dx.doi.org/10.1016/B978-0-444-64235-6.50166-2
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Luna, Martín Francisco; Martínez, Ernesto Carlos; Sequential Bayesian Experimental Design for Process Optimization with Stochastic Binary Outcomes; Elsevier B.V.; Computer Aided Chemical Engineering; 43; 1-2018; 943-948
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES