Mostrar el registro sencillo del ítem

dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Tandeo, Pierre
dc.contributor.author
Bocquet, Marc
dc.contributor.author
Carrasi, Alberto
dc.contributor.author
Lucini, María Magdalena
dc.date.available
2019-10-21T22:32:53Z
dc.date.issued
2018-01
dc.identifier.citation
Pulido, Manuel Arturo; Tandeo, Pierre; Bocquet, Marc; Carrasi, Alberto; Lucini, María Magdalena; Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods; Taylor & Francis; Tellus A; 70; 1; 1-2018; 1-15
dc.identifier.issn
1600-0870
dc.identifier.uri
http://hdl.handle.net/11336/86787
dc.description.abstract
For modelling geophysical systems, large-scale processes are described through a set of coarse-grained dynamical equations while small-scale processes are represented via parameterizations. This work proposes a method for identifying the best possible stochastic parameterization from noisy data. State-of-the-art sequential estimation methods such as Kalman and particle filters do not achieve this goal successfully because both suffer from the collapse of the posterior distribution of the parameters. To overcome this intrinsic limitation, we propose two statistical learning methods. They are based on the combination of the ensemble Kalman filter (EnKF) with either the expectation–maximization (EM) or the Newton–Raphson (NR) used to maximize a likelihood associated to the parameters to be estimated. The EM and NR are applied primarily in the statistics and machine learning communities and are brought here in the context of data assimilation for the geosciences. The methods are derived using a Bayesian approach for a hidden Markov model and they are applied to infer deterministic and stochastic physical parameters from noisy observations in coarse-grained dynamical models. Numerical experiments are conducted using the Lorenz-96 dynamical system with one and two scales as a proof of concept. The imperfect coarse-grained model is modelled through a one-scale Lorenz-96 system in which a stochastic parameterization is incorporated to represent the small-scale dynamics. The algorithms are able to identify the optimal stochastic parameterization with good accuracy under moderate observational noise. The proposed EnKF-EM and EnKF-NR are promising efficient statistical learning methods for developing stochastic parameterizations in high-dimensional geophysical models.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
EXPECTATION–MAXIMIZATION ALGORITHM
dc.subject
MODEL ERROR ESTIMATION
dc.subject
PARAMETER ESTIMATION
dc.subject
STOCHASTIC PARAMETERIZATION
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-18T15:46:03Z
dc.identifier.eissn
0280-6495
dc.journal.volume
70
dc.journal.number
1
dc.journal.pagination
1-15
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.description.fil
Fil: Tandeo, Pierre. Centre National de la Recherche Scientifique; Francia. Universite de Bretagne Occidentale; Francia
dc.description.fil
Fil: Bocquet, Marc. Université Paris-Est; Francia
dc.description.fil
Fil: Carrasi, Alberto. Nansen Environmental and Remote Sensing Center; Noruega
dc.description.fil
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina
dc.journal.title
Tellus A
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/16000870.2018.1442099
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/16000870.2018.1442099


Archivos asociados

 

Comunidades y colecciones

Mostrar el registro sencillo del ítem