Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods

Pulido, Manuel ArturoIcon ; Tandeo, Pierre; Bocquet, Marc; Carrasi, Alberto; Lucini, María MagdalenaIcon
Fecha de publicación: 01/2018
Editorial: Taylor & Francis
Revista: Tellus A
ISSN: 1600-0870
e-ISSN: 0280-6495
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

For modelling geophysical systems, large-scale processes are described through a set of coarse-grained dynamical equations while small-scale processes are represented via parameterizations. This work proposes a method for identifying the best possible stochastic parameterization from noisy data. State-of-the-art sequential estimation methods such as Kalman and particle filters do not achieve this goal successfully because both suffer from the collapse of the posterior distribution of the parameters. To overcome this intrinsic limitation, we propose two statistical learning methods. They are based on the combination of the ensemble Kalman filter (EnKF) with either the expectation–maximization (EM) or the Newton–Raphson (NR) used to maximize a likelihood associated to the parameters to be estimated. The EM and NR are applied primarily in the statistics and machine learning communities and are brought here in the context of data assimilation for the geosciences. The methods are derived using a Bayesian approach for a hidden Markov model and they are applied to infer deterministic and stochastic physical parameters from noisy observations in coarse-grained dynamical models. Numerical experiments are conducted using the Lorenz-96 dynamical system with one and two scales as a proof of concept. The imperfect coarse-grained model is modelled through a one-scale Lorenz-96 system in which a stochastic parameterization is incorporated to represent the small-scale dynamics. The algorithms are able to identify the optimal stochastic parameterization with good accuracy under moderate observational noise. The proposed EnKF-EM and EnKF-NR are promising efficient statistical learning methods for developing stochastic parameterizations in high-dimensional geophysical models.
Palabras clave: EXPECTATION–MAXIMIZATION ALGORITHM , MODEL ERROR ESTIMATION , PARAMETER ESTIMATION , STOCHASTIC PARAMETERIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.170Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/86787
URL: https://www.tandfonline.com/doi/full/10.1080/16000870.2018.1442099
DOI: http://dx.doi.org/10.1080/16000870.2018.1442099
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Pulido, Manuel Arturo; Tandeo, Pierre; Bocquet, Marc; Carrasi, Alberto; Lucini, María Magdalena; Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods; Taylor & Francis; Tellus A; 70; 1; 1-2018; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES