Mostrar el registro sencillo del ítem

dc.contributor.author
Albanesi, Alejandro Eduardo  
dc.contributor.author
Roman, Nadia Denise  
dc.contributor.author
Bre, Facundo  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.date.available
2019-10-17T20:57:40Z  
dc.date.issued
2018-06  
dc.identifier.citation
Albanesi, Alejandro Eduardo; Roman, Nadia Denise; Bre, Facundo; Fachinotti, Victor Daniel; A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades; Elsevier; Composite Structures; 194; 6-2018; 345-356  
dc.identifier.issn
0263-8223  
dc.identifier.uri
http://hdl.handle.net/11336/86223  
dc.description.abstract
In wind turbine blades, the complex resultant geometry due to the aerodynamic design cannot be modified in the successive mechanical design stage. Hence, the reduction of the weight and manufacturing costs of the blades while assuring appropriate levels of structural stiffness, integrity and reliability, require a composite material layout that must be optimally defined. The aim of this work is to present a metamodel-based method to optimize the composite laminate of wind turbine blades. This methodology combines a genetic algorithm (GA) with an artificial neural network (ANN) in order to reduce the computational cost of the optimization procedure. Therefore, at first, representative samples were built to train and validate the ANN model, and then, the ANN model is coupled with GA to find the optimal structural blade design. As an actual case study, the method was applied to redesign a medium-power 40-kW wind turbine blade to reduce its mass while structural and manufacturing constrained are fulfilled. The results indicated that is possible to save of up to 20% of laminated mass compared to a reference design. Furthermore, a 40% reduction of the computational cost was achieved in contrast with the typical simulation-based optimization approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
COMPOSITE MATERIALS  
dc.subject
GENETIC ALGORITHM  
dc.subject
OPTIMIZATION  
dc.subject
WIND TURBINE BLADE  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Compuestos  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-16T19:29:12Z  
dc.journal.volume
194  
dc.journal.pagination
345-356  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Albanesi, Alejandro Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Roman, Nadia Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.journal.title
Composite Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0263822318301879  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compstruct.2018.04.015