Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades

Albanesi, Alejandro EduardoIcon ; Roman, Nadia DeniseIcon ; Bre, FacundoIcon ; Fachinotti, Victor DanielIcon
Fecha de publicación: 06/2018
Editorial: Elsevier
Revista: Composite Structures
ISSN: 0263-8223
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada; Compuestos

Resumen

In wind turbine blades, the complex resultant geometry due to the aerodynamic design cannot be modified in the successive mechanical design stage. Hence, the reduction of the weight and manufacturing costs of the blades while assuring appropriate levels of structural stiffness, integrity and reliability, require a composite material layout that must be optimally defined. The aim of this work is to present a metamodel-based method to optimize the composite laminate of wind turbine blades. This methodology combines a genetic algorithm (GA) with an artificial neural network (ANN) in order to reduce the computational cost of the optimization procedure. Therefore, at first, representative samples were built to train and validate the ANN model, and then, the ANN model is coupled with GA to find the optimal structural blade design. As an actual case study, the method was applied to redesign a medium-power 40-kW wind turbine blade to reduce its mass while structural and manufacturing constrained are fulfilled. The results indicated that is possible to save of up to 20% of laminated mass compared to a reference design. Furthermore, a 40% reduction of the computational cost was achieved in contrast with the typical simulation-based optimization approach.
Palabras clave: ARTIFICIAL NEURAL NETWORK , COMPOSITE MATERIALS , GENETIC ALGORITHM , OPTIMIZATION , WIND TURBINE BLADE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.427Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/86223
URL: https://www.sciencedirect.com/science/article/pii/S0263822318301879
DOI: https://doi.org/10.1016/j.compstruct.2018.04.015
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Albanesi, Alejandro Eduardo; Roman, Nadia Denise; Bre, Facundo; Fachinotti, Victor Daniel; A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades; Elsevier; Composite Structures; 194; 6-2018; 345-356
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES