Artículo
Weighted mixed weak-type inequalities for multilinear operators
Fecha de publicación:
05/2018
Editorial:
Polish Academy of Sciences. Institute of Mathematics
Revista:
Studia Mathematica
ISSN:
0039-3223
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we present a theorem that generalizes Sawyer’s classic result about mixed weighted inequalities to the multilinear context. Let ~w = (w1, ..., wm) and ν = w 1 m 1 ...w 1 mm , the main result of the paper sentences that under different conditions on the weights we can obtain T ( ~f )(x) v L 1m ,∞(νv 1m ) ≤ C Ym i=1 kfikL1(wi), where T is a multilinear Calderón-Zygmund operator. To obtain this result we first prove it for the m-fold product of the Hardy-Littlewood maximal operator M, and also for M(f~)(x): the multi(sub)linear maximal function introduced in [13]. As an application we also prove a vector-valued extension to the mixed weighted weak-type inequalities of multilinear Calder´on-Zygmund operators.
Palabras clave:
MULTILINEAR OPERATORS
,
MIXED WEIGHTED INEQUALITIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Li, Kangwe; Ombrosi, Sheldy Javier; Picardi, María Belén; Weighted mixed weak-type inequalities for multilinear operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 244; 5-2018; 203-215
Compartir
Altmétricas