Mostrar el registro sencillo del ítem

dc.contributor.author
Luege, Mariela  
dc.contributor.author
Orlando, Antonio  
dc.contributor.author
Almenar, Martín Ernesto  
dc.contributor.author
Pilotta, Elvio Angel  
dc.date.available
2019-10-10T14:35:12Z  
dc.date.issued
2018-12  
dc.identifier.citation
Luege, Mariela; Orlando, Antonio; Almenar, Martín Ernesto; Pilotta, Elvio Angel; An energetic formulation of a gradient damage model for concrete and its numerical implementation; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 155; 12-2018; 160-184  
dc.identifier.issn
0020-7683  
dc.identifier.uri
http://hdl.handle.net/11336/85493  
dc.description.abstract
The energetic formulation of a rate-independent system assumes that the evolution of the system is driven by two scalar-valued functions: the storage energy functional and the dissipation pseudo-potential. The evolution of the material system is then characterized by two energetic principles: the global stability condition and the energy balance between stored and dissipated energies with the work of external loading. Rate-independent generalized standard materials are endowed with such structure, whereas the existence of such energetic structure is not so apparent in materials with non-associated flow rule. In this paper, we consider a rate-independent gradient damage model for concrete where the evolution of the damage does not follow the normality rule. We will show that such model can be nevertheless derived by a dissipation potential at the expense of having a state variable-dependent potential, and therefore the energetic formulation can be obtained also in this case. After introducing the incremental minimization problem consistent with such formulation, we obtain a discrete version of the stability condition and establish lower and upper a-priori energy bounds met by the energetic solution. These are fundamental results for the analysis of the formulation. The actual numerical solution of the incremental minimization problem is realized by considering first a variable splitting in order to treat the gradient of the damage field as an independent variable, and then by applying the augmented Lagrangian method to tackle with the resulting constrained optimization problem. We solve the first order stationarity conditions of the augmented Lagrangian functional by a path-following Newton's method based on the energy dissipation rate control. We show that we are able to describe highly non-linear responses of the material, such as softening branches and snap-back responses. Several numerical tests are performed to verify the objectivity of the formulation and of the proposed numerical method. Details of the numerical implementation are also given.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONCRETE MATERIAL BEHAVIOR  
dc.subject
DISSIPATION BASED CONTINUATION NEWTON'S METHOD  
dc.subject
ENERGETIC FORMULATION  
dc.subject
GRADIENT DAMAGE MODEL  
dc.subject
RATE-INDEPENDENT PROCESSES  
dc.subject
TWO-SIDED ENERGETIC INEQUALITY  
dc.subject.classification
Ingeniería Estructural  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An energetic formulation of a gradient damage model for concrete and its numerical implementation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-30T14:27:41Z  
dc.journal.volume
155  
dc.journal.pagination
160-184  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Luege, Mariela. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Orlando, Antonio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Almenar, Martín Ernesto. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pilotta, Elvio Angel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
International Journal Of Solids And Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020768318303007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ijsolstr.2018.07.017