Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An energetic formulation of a gradient damage model for concrete and its numerical implementation

Luege, MarielaIcon ; Orlando, AntonioIcon ; Almenar, Martín ErnestoIcon ; Pilotta, Elvio AngelIcon
Fecha de publicación: 12/2018
Editorial: Pergamon-Elsevier Science Ltd
Revista: International Journal Of Solids And Structures
ISSN: 0020-7683
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Estructural

Resumen

The energetic formulation of a rate-independent system assumes that the evolution of the system is driven by two scalar-valued functions: the storage energy functional and the dissipation pseudo-potential. The evolution of the material system is then characterized by two energetic principles: the global stability condition and the energy balance between stored and dissipated energies with the work of external loading. Rate-independent generalized standard materials are endowed with such structure, whereas the existence of such energetic structure is not so apparent in materials with non-associated flow rule. In this paper, we consider a rate-independent gradient damage model for concrete where the evolution of the damage does not follow the normality rule. We will show that such model can be nevertheless derived by a dissipation potential at the expense of having a state variable-dependent potential, and therefore the energetic formulation can be obtained also in this case. After introducing the incremental minimization problem consistent with such formulation, we obtain a discrete version of the stability condition and establish lower and upper a-priori energy bounds met by the energetic solution. These are fundamental results for the analysis of the formulation. The actual numerical solution of the incremental minimization problem is realized by considering first a variable splitting in order to treat the gradient of the damage field as an independent variable, and then by applying the augmented Lagrangian method to tackle with the resulting constrained optimization problem. We solve the first order stationarity conditions of the augmented Lagrangian functional by a path-following Newton's method based on the energy dissipation rate control. We show that we are able to describe highly non-linear responses of the material, such as softening branches and snap-back responses. Several numerical tests are performed to verify the objectivity of the formulation and of the proposed numerical method. Details of the numerical implementation are also given.
Palabras clave: CONCRETE MATERIAL BEHAVIOR , DISSIPATION BASED CONTINUATION NEWTON'S METHOD , ENERGETIC FORMULATION , GRADIENT DAMAGE MODEL , RATE-INDEPENDENT PROCESSES , TWO-SIDED ENERGETIC INEQUALITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.096Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/85493
URL: https://www.sciencedirect.com/science/article/pii/S0020768318303007
DOI: https://doi.org/10.1016/j.ijsolstr.2018.07.017
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Luege, Mariela; Orlando, Antonio; Almenar, Martín Ernesto; Pilotta, Elvio Angel; An energetic formulation of a gradient damage model for concrete and its numerical implementation; Pergamon-Elsevier Science Ltd; International Journal Of Solids And Structures; 155; 12-2018; 160-184
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES