Mostrar el registro sencillo del ítem
dc.contributor.author
Bank, Bernd
dc.contributor.author
Giusti, Marc
dc.contributor.author
Heintz, Joos Ulrich
dc.date.available
2019-09-27T17:44:58Z
dc.date.issued
2014-03
dc.identifier.citation
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897
dc.identifier.issn
0025-5718
dc.identifier.uri
http://hdl.handle.net/11336/84684
dc.description.abstract
Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
REAL POLYNOMIAL EQUATION SOLVING
dc.subject
INTRINSIC COMPLEXITY
dc.subject
SINGULARITIES
dc.subject
POLAR,COPOPLAR AND BIPOLAR VARIETIES
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-24T12:52:05Z
dc.identifier.eissn
1088-6842
dc.journal.volume
83
dc.journal.number
286
dc.journal.pagination
873-897
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Providence
dc.description.fil
Fil: Bank, Bernd. Universität zu Berlin; Alemania
dc.description.fil
Fil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; España
dc.journal.title
Mathematics of Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-286/S0025-5718-2013-02766-4/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0025-5718-2013-02766-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Point-searching-in-real-singularcomplete-varieties%3A-Bank-Giusti/d210e6eaea64b54986673b1fdb4d22318ad7080e
Archivos asociados