Artículo
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
Fecha de publicación:
03/2014
Editorial:
American Mathematical Society
Revista:
Mathematics of Computation
ISSN:
0025-5718
e-ISSN:
1088-6842
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897
Compartir
Altmétricas