Mostrar el registro sencillo del ítem

dc.contributor.author
Tomassi, Diego Rodolfo  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Forzani, Liliana Maria  
dc.date.available
2019-09-27T15:11:22Z  
dc.date.issued
2009-10  
dc.identifier.citation
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error training of hidden Markov models for sequential data in the wavelet domain; Asociación Española para la Inteligencia Artificial; Inteligencia Artificial; 13; 44; 10-2009; 46-55  
dc.identifier.issn
1137-3601  
dc.identifier.uri
http://hdl.handle.net/11336/84665  
dc.description.abstract
In the last years there has been increasing interest in developing discriminative training methods for hidden Markov models, with the aim to improve their performance in classification and pattern recognition tasks. Although several advances have been made in this area, they have been targeted almost exclusively to standard models whose conditional observations are given by a Gaussian mixture density. In parallel with this development, a special kind of hidden Markov models defined in the wavelet domain has found wide-spread use in the signal and image processing community. Nevertheless, these models have been typically restricted to fully-tied parameter training using a single sequence and maximum likelihood estimates. This paper takes a step forward in the development of sequential pattern recognizers based on wavelet-domain hidden Markov models by introducing a new discriminative training method. The learning strategy relies on the minimum classification error approach and provides reestimation formulas for fully non-tied models. Numerical experiments on a simple phoneme recognition task show important improvement over the recognition rate achieved by the same models trained under the maximum likelihood estimation approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Asociación Española para la Inteligencia Artificial  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
REVISTA IBEROAMERICANA DE INTELIGENCIA ARTIFICIAL  
dc.subject
SAMPLE DOCUMENT  
dc.subject
STYLE  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimum classification error training of hidden Markov models for sequential data in the wavelet domain  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:16:38Z  
dc.identifier.eissn
1988-3064  
dc.journal.volume
13  
dc.journal.number
44  
dc.journal.pagination
46-55  
dc.journal.pais
España  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.journal.title
Inteligencia Artificial  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dialnet.unirioja.es/servlet/articulo?codigo=3215292  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.redalyc.org/pdf/925/92513154006.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4114/ia.v13i44.1045