Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Minimum classification error training of hidden Markov models for sequential data in the wavelet domain

Tomassi, Diego RodolfoIcon ; Milone, Diego HumbertoIcon ; Forzani, Liliana MariaIcon
Fecha de publicación: 10/2009
Editorial: Asociación Española para la Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

In the last years there has been increasing interest in developing discriminative training methods for hidden Markov models, with the aim to improve their performance in classification and pattern recognition tasks. Although several advances have been made in this area, they have been targeted almost exclusively to standard models whose conditional observations are given by a Gaussian mixture density. In parallel with this development, a special kind of hidden Markov models defined in the wavelet domain has found wide-spread use in the signal and image processing community. Nevertheless, these models have been typically restricted to fully-tied parameter training using a single sequence and maximum likelihood estimates. This paper takes a step forward in the development of sequential pattern recognizers based on wavelet-domain hidden Markov models by introducing a new discriminative training method. The learning strategy relies on the minimum classification error approach and provides reestimation formulas for fully non-tied models. Numerical experiments on a simple phoneme recognition task show important improvement over the recognition rate achieved by the same models trained under the maximum likelihood estimation approach.
Palabras clave: REVISTA IBEROAMERICANA DE INTELIGENCIA ARTIFICIAL , SAMPLE DOCUMENT , STYLE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 266.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/84665
URL: http://dialnet.unirioja.es/servlet/articulo?codigo=3215292
URL: https://www.redalyc.org/pdf/925/92513154006.pdf
DOI: http://dx.doi.org/10.4114/ia.v13i44.1045
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error training of hidden Markov models for sequential data in the wavelet domain; Asociación Española para la Inteligencia Artificial; Inteligencia Artificial; 13; 44; 10-2009; 46-55
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES