Mostrar el registro sencillo del ítem
dc.contributor.author
Groshaus, Marina Esther
dc.contributor.author
Soulignac, Francisco Juan
dc.contributor.author
Terlisky, Pablo Ezequiel
dc.date.available
2019-09-26T15:40:07Z
dc.date.issued
2014-05
dc.identifier.citation
Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-383
dc.identifier.issn
1526-1719
dc.identifier.uri
http://hdl.handle.net/11336/84531
dc.description.abstract
A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Brown University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Biclique
dc.subject
Coloring
dc.subject
Choosability Problems
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The star and biclique coloring and choosability problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-24T12:51:20Z
dc.journal.volume
18
dc.journal.number
3
dc.journal.pagination
347-383
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Soulignac, Francisco Juan. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Terlisky, Pablo Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Graph Algorithms and Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jgaa.info/accepted/2014/GroshausSoulignacTerlisky2014.18.3.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7155/jgaa.00326
Archivos asociados