Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The star and biclique coloring and choosability problems

Groshaus, Marina EstherIcon ; Soulignac, Francisco JuanIcon ; Terlisky, Pablo Ezequiel
Fecha de publicación: 05/2014
Editorial: Brown University
Revista: Journal of Graph Algorithms and Applications
ISSN: 1526-1719
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Matemática Aplicada

Resumen

A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.
Palabras clave: Biclique , Coloring , Choosability Problems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 725.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/84531
URL: http://jgaa.info/accepted/2014/GroshausSoulignacTerlisky2014.18.3.pdf
DOI: http://dx.doi.org/10.7155/jgaa.00326
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-383
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES