Artículo
The star and biclique coloring and choosability problems
Fecha de publicación:
05/2014
Editorial:
Brown University
Revista:
Journal of Graph Algorithms and Applications
ISSN:
1526-1719
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) L- coloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specifically, we prove that the star (biclique) k-coloring and k-choosability problems are Σp2-complete and IIp3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.
Palabras clave:
Biclique
,
Coloring
,
Choosability Problems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Groshaus, Marina Esther; Soulignac, Francisco Juan; Terlisky, Pablo Ezequiel; The star and biclique coloring and choosability problems; Brown University; Journal of Graph Algorithms and Applications; 18; 3; 5-2014; 347-383
Compartir
Altmétricas