Mostrar el registro sencillo del ítem
dc.contributor.author
Muro, Luis Santiago Miguel
dc.contributor.author
Pinasco, Damian
dc.contributor.author
Savransky, Martin
dc.date.available
2019-09-25T19:16:15Z
dc.date.issued
2014-11
dc.identifier.citation
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-468
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/84445
dc.description.abstract
A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVOLUTION OPERATORS
dc.subject
FREQUENTLY HYPERCYCLIC OPERATORS
dc.subject
HOLOMORPHY TYPES
dc.subject
STRONGLY MIXING OPERATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-24T12:51:37Z
dc.identifier.eissn
1420-8989
dc.journal.volume
80
dc.journal.number
4
dc.journal.pagination
453-468
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00020-014-2182-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-014-2182-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7671
Archivos asociados