Artículo
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
Fecha de publicación:
11/2014
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
e-ISSN:
1420-8989
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-468
Compartir
Altmétricas