Mostrar el registro sencillo del ítem

dc.contributor.author
Lin, Min Chih  
dc.contributor.author
Soulignac, Francisco Juan  
dc.contributor.author
Szwarcfiter, Jayme L.  
dc.date.available
2019-09-25T19:08:11Z  
dc.date.issued
2013-05  
dc.identifier.citation
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-1059  
dc.identifier.issn
0166-218X  
dc.identifier.uri
http://hdl.handle.net/11336/84437  
dc.description.abstract
A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
HELLY CIRCULAR-ARC GRAPHS  
dc.subject
NORMAL CIRCULAR-ARC GRAPHS  
dc.subject
PROPER CIRCULAR-ARC GRAPHS  
dc.subject
UNIT CIRCULAR-ARC GRAPHS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Normal Helly circular-arc graphs and its subclasses  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-24T12:52:53Z  
dc.journal.volume
161  
dc.journal.number
7-8  
dc.journal.pagination
1037-1059  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil  
dc.journal.title
Discrete Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2012.11.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12004295