Mostrar el registro sencillo del ítem
dc.contributor.author
Lin, Min Chih
dc.contributor.author
Soulignac, Francisco Juan
dc.contributor.author
Szwarcfiter, Jayme L.
dc.date.available
2019-09-25T19:08:11Z
dc.date.issued
2013-05
dc.identifier.citation
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-1059
dc.identifier.issn
0166-218X
dc.identifier.uri
http://hdl.handle.net/11336/84437
dc.description.abstract
A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
HELLY CIRCULAR-ARC GRAPHS
dc.subject
NORMAL CIRCULAR-ARC GRAPHS
dc.subject
PROPER CIRCULAR-ARC GRAPHS
dc.subject
UNIT CIRCULAR-ARC GRAPHS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Normal Helly circular-arc graphs and its subclasses
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-24T12:52:53Z
dc.journal.volume
161
dc.journal.number
7-8
dc.journal.pagination
1037-1059
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
dc.journal.title
Discrete Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2012.11.005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12004295
Archivos asociados