Artículo
The packing chromatic number of hypercubes
Fecha de publicación:
08/2015
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The packing chromatic number χρ (G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at leasti+1. Goddard et al. (2008) found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ (Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ (Qn) and we improve the lower bounds for χρ (Qn) for 6 ≤ n ≤ 11. In particular we compute the exact value of χρ (Qn) for 6 ≤ n ≤ 8.
Palabras clave:
Hypercube Graphs
,
Packing Chromatic Number
,
Upper Bound
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Torres, Pablo Daniel; Valencia Pabon, Mario; The packing chromatic number of hypercubes; Elsevier Science; Discrete Applied Mathematics; 190-191; 8-2015; 127-140
Compartir
Altmétricas