Mostrar el registro sencillo del ítem

dc.contributor.author
Bänsch, Eberhard  
dc.contributor.author
Morin, Pedro  
dc.contributor.author
Nochetto, Ricardo Horacio  
dc.date.available
2019-09-24T19:08:08Z  
dc.date.issued
2005-02  
dc.identifier.citation
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; A finite element method for surface diffusion: The parametric case; Elsevier; Journal of Computational Physics; 203; 1; 2-2005; 321-343  
dc.identifier.issn
0021-9991  
dc.identifier.uri
http://hdl.handle.net/11336/84302  
dc.description.abstract
Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric surfaces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time and space adaptivity to increase accuracy while reducing complexity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FINITE ELEMENTS  
dc.subject
FOURTH-ORDER PARABOLIC PROBLEM  
dc.subject
PINCH-OFF  
dc.subject
SCHUR COMPLEMENT  
dc.subject
SMOOTHING EFFECT  
dc.subject
SURFACE DIFFUSION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A finite element method for surface diffusion: The parametric case  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:18:30Z  
dc.journal.volume
203  
dc.journal.number
1  
dc.journal.pagination
321-343  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bänsch, Eberhard. Weierstrass Institute for Applied Analysis and Stochastics; Alemania. Freie Universität Berlin; Alemania  
dc.description.fil
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos  
dc.journal.title
Journal of Computational Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jcp.2004.08.022