Artículo
A finite element method for surface diffusion: The parametric case
Fecha de publicación:
02/2005
Editorial:
Elsevier
Revista:
Journal of Computational Physics
ISSN:
0021-9991
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric surfaces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time and space adaptivity to increase accuracy while reducing complexity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; A finite element method for surface diffusion: The parametric case; Elsevier; Journal of Computational Physics; 203; 1; 2-2005; 321-343
Compartir
Altmétricas