Mostrar el registro sencillo del ítem
dc.contributor.author
Herdman, T.
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Temperini, Karina Guadalupe
dc.date.available
2019-09-24T17:08:26Z
dc.date.issued
2009-06
dc.identifier.citation
Herdman, T.; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Generalized qualification and qualification levels for spectral regularization methods; Springer/Plenum Publishers; Journal Of Optimization Theory And Applications; 141; 3; 6-2009; 547-567
dc.identifier.issn
0022-3239
dc.identifier.uri
http://hdl.handle.net/11336/84285
dc.description.abstract
The concept of qualification for spectral regularization methods (SRM) for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error (Engl et al. in Regularization of inverse problems. Mathematics and its applications, vol. 375, Kluwer Academic, Dordrecht, 1996; Mathé in SIAM J. Numer. Anal. 42(3):968-973, 2004; Mathé and Pereverzev in Inverse Probl. 19(3):789-803, 2003; Vainikko in USSR Comput. Math. Math. Phys. 22(3): 1-19, 1982). In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003), mainly in the sense that the functions associated with orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification (e.g. truncated singular value decomposition (TSVD), Landweber's method and Showalter's method) also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced in Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003) are shown. In particular, SRMs having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally, several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer/Plenum Publishers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INVERSE ILL-POSED PROBLEMS
dc.subject
QUALIFICATIONS
dc.subject
REGULARIZATION METHODS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Generalized qualification and qualification levels for spectral regularization methods
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:16:40Z
dc.journal.volume
141
dc.journal.number
3
dc.journal.pagination
547-567
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Herdman, T.. Virginia Polytechnic Institute; Estados Unidos
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Journal Of Optimization Theory And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.springer.com/mathematics/journal/10957
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10957-008-9492-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.5435
Archivos asociados