Mostrar el registro sencillo del ítem

dc.contributor.author
Herdman, T.  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Temperini, Karina Guadalupe  
dc.date.available
2019-09-24T17:08:26Z  
dc.date.issued
2009-06  
dc.identifier.citation
Herdman, T.; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Generalized qualification and qualification levels for spectral regularization methods; Springer/Plenum Publishers; Journal Of Optimization Theory And Applications; 141; 3; 6-2009; 547-567  
dc.identifier.issn
0022-3239  
dc.identifier.uri
http://hdl.handle.net/11336/84285  
dc.description.abstract
The concept of qualification for spectral regularization methods (SRM) for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error (Engl et al. in Regularization of inverse problems. Mathematics and its applications, vol. 375, Kluwer Academic, Dordrecht, 1996; Mathé in SIAM J. Numer. Anal. 42(3):968-973, 2004; Mathé and Pereverzev in Inverse Probl. 19(3):789-803, 2003; Vainikko in USSR Comput. Math. Math. Phys. 22(3): 1-19, 1982). In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003), mainly in the sense that the functions associated with orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification (e.g. truncated singular value decomposition (TSVD), Landweber's method and Showalter's method) also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced in Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003) are shown. In particular, SRMs having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally, several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer/Plenum Publishers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INVERSE ILL-POSED PROBLEMS  
dc.subject
QUALIFICATIONS  
dc.subject
REGULARIZATION METHODS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Generalized qualification and qualification levels for spectral regularization methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:16:40Z  
dc.journal.volume
141  
dc.journal.number
3  
dc.journal.pagination
547-567  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Herdman, T.. Virginia Polytechnic Institute; Estados Unidos  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Journal Of Optimization Theory And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.springer.com/mathematics/journal/10957  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10957-008-9492-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.5435