Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Generalized qualification and qualification levels for spectral regularization methods

Herdman, T.; Spies, Ruben DanielIcon ; Temperini, Karina GuadalupeIcon
Fecha de publicación: 06/2009
Editorial: Springer/Plenum Publishers
Revista: Journal Of Optimization Theory And Applications
ISSN: 0022-3239
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

The concept of qualification for spectral regularization methods (SRM) for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error (Engl et al. in Regularization of inverse problems. Mathematics and its applications, vol. 375, Kluwer Academic, Dordrecht, 1996; Mathé in SIAM J. Numer. Anal. 42(3):968-973, 2004; Mathé and Pereverzev in Inverse Probl. 19(3):789-803, 2003; Vainikko in USSR Comput. Math. Math. Phys. 22(3): 1-19, 1982). In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003), mainly in the sense that the functions associated with orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification (e.g. truncated singular value decomposition (TSVD), Landweber's method and Showalter's method) also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced in Mathé and Pereverzev (Inverse Probl. 19(3):789-803, 2003) are shown. In particular, SRMs having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally, several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown.
Palabras clave: INVERSE ILL-POSED PROBLEMS , QUALIFICATIONS , REGULARIZATION METHODS
Ver el registro completo
 
Archivos asociados
Tamaño: 420.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/84285
URL: http://www.springer.com/mathematics/journal/10957
DOI: http://dx.doi.org/10.1007/s10957-008-9492-1
URL: https://arxiv.org/abs/1007.5435
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Herdman, T.; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Generalized qualification and qualification levels for spectral regularization methods; Springer/Plenum Publishers; Journal Of Optimization Theory And Applications; 141; 3; 6-2009; 547-567
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES