Mostrar el registro sencillo del ítem
dc.contributor.author
Aguilera, Néstor Edgardo
dc.contributor.author
Morin, Pedro
dc.date.available
2019-09-24T16:48:55Z
dc.date.issued
2009-12
dc.identifier.citation
Aguilera, Néstor Edgardo; Morin, Pedro; On Convex Functions and the Finite Element Method; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 47; 4; 12-2009; 3139-3157
dc.identifier.issn
0036-1429
dc.identifier.uri
http://hdl.handle.net/11336/84278
dc.description.abstract
Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Finite Element Method
dc.subject
Optimization Problems
dc.subject
Convex Functions
dc.subject
Adaptive Meshes
dc.subject
Finite Element Method
dc.subject
Optimization Problems
dc.subject
Convex Functions
dc.subject
Adaptive Meshes
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On Convex Functions and the Finite Element Method
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:16:42Z
dc.journal.volume
47
dc.journal.number
4
dc.journal.pagination
3139-3157
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Philadelphia
dc.description.fil
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Morin, Pedro. Universidad Nacional del Litoral; Argentina
dc.journal.title
Siam Journal On Numerical Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/080720917
Archivos asociados