Artículo
On Convex Functions and the Finite Element Method
Fecha de publicación:
12/2009
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Many problems of theoretical and practical interest involve finding a convex or concave function.For instance, optimization problems such as finding the projection on the convex functions in $H^k(Omega)$, or some problems in economics.In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given.In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes.Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aguilera, Néstor Edgardo; Morin, Pedro; On Convex Functions and the Finite Element Method; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 47; 4; 12-2009; 3139-3157
Compartir
Altmétricas