Mostrar el registro sencillo del ítem

dc.contributor.author
Bernardis, Ana Lucia  
dc.contributor.author
Martín Reyes, Francisco Javier  
dc.contributor.author
Salvador, P. Ortega  
dc.date.available
2019-09-24T13:22:50Z  
dc.date.issued
2007-12  
dc.identifier.citation
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-295  
dc.identifier.issn
0008-414X  
dc.identifier.uri
http://hdl.handle.net/11336/84239  
dc.description.abstract
We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Canadian Mathematical Soc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HARDY-STEKLOV OPERATOR  
dc.subject
INEQUALITIES  
dc.subject
WEIGHTS  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weighted inequalities for Hardy-Steklov operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-20T14:18:08Z  
dc.journal.volume
59  
dc.journal.number
2  
dc.journal.pagination
276-295  
dc.journal.pais
Canadá  
dc.journal.ciudad
Vancouver  
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España  
dc.description.fil
Fil: Salvador, P. Ortega. Universidad de Málaga; España  
dc.journal.title
Canadian Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4153/CJM-2007-011-x