Mostrar el registro sencillo del ítem
dc.contributor.author
Bernardis, Ana Lucia
dc.contributor.author
Martín Reyes, Francisco Javier
dc.contributor.author
Salvador, P. Ortega
dc.date.available
2019-09-24T13:22:50Z
dc.date.issued
2007-12
dc.identifier.citation
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-295
dc.identifier.issn
0008-414X
dc.identifier.uri
http://hdl.handle.net/11336/84239
dc.description.abstract
We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Canadian Mathematical Soc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HARDY-STEKLOV OPERATOR
dc.subject
INEQUALITIES
dc.subject
WEIGHTS
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Weighted inequalities for Hardy-Steklov operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:18:08Z
dc.journal.volume
59
dc.journal.number
2
dc.journal.pagination
276-295
dc.journal.pais
Canadá
dc.journal.ciudad
Vancouver
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
dc.description.fil
Fil: Salvador, P. Ortega. Universidad de Málaga; España
dc.journal.title
Canadian Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4153/CJM-2007-011-x
Archivos asociados