Artículo
Weighted inequalities for Hardy-Steklov operators
Fecha de publicación:
12/2007
Editorial:
Canadian Mathematical Soc
Revista:
Canadian Journal Of Mathematics
ISSN:
0008-414X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).
Palabras clave:
HARDY-STEKLOV OPERATOR
,
INEQUALITIES
,
WEIGHTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-295
Compartir
Altmétricas