Mostrar el registro sencillo del ítem
dc.contributor.author
Bernardis, Ana Lucia
dc.contributor.author
Lorente Dominguez, María
dc.date.available
2019-09-23T17:31:05Z
dc.date.issued
2008-08
dc.identifier.citation
Bernardis, Ana Lucia; Lorente Dominguez, María; Sharp Two weight inequalities for commutators of Riemann-Liouville and Weyl fractional integral operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 61; 4; 8-2008; 449-475
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/84138
dc.description.abstract
Let b be a BMO function, 0 < α < 1 and I+,k α,b the commutator of order k for the Weyl fractional integral. In this paper we prove weighted strong type (p, p) inequalities (p > 1) and weighted endpoint estimates (p = 1) for the operator I+,k α,b and for the pairs of weights of the type (w, Mw), where w is any weight and M is a suitable one-sided maximal operator. We also prove that, for A+∞ weights, the operator I +,kα,b is controlled in the Lp (w) norm by a composition of the one-sided fractional maximal operator and the one-sided Hardy-Littlewood maximal operator iterated k times. These results improve those obtained by an immediate application of the corresponding two-sided results and provide a different way to obtain known results about the operators I +,kα,b. The same results can be obtained for the commutator of order k for the Riemann-Liouville fractional integral I -,kα,b.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Commutators
dc.subject
Riemann-Liouville And Weyl Fractional Integrals
dc.subject
Weighted Inequalities
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sharp Two weight inequalities for commutators of Riemann-Liouville and Weyl fractional integral operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-09-20T14:18:10Z
dc.journal.volume
61
dc.journal.number
4
dc.journal.pagination
449-475
dc.journal.pais
Suiza
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Lorente Dominguez, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-008-1600-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-008-1600-y
Archivos asociados