Artículo
Sharp Two weight inequalities for commutators of Riemann-Liouville and Weyl fractional integral operators
Fecha de publicación:
08/2008
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let b be a BMO function, 0 < α < 1 and I+,k α,b the commutator of order k for the Weyl fractional integral. In this paper we prove weighted strong type (p, p) inequalities (p > 1) and weighted endpoint estimates (p = 1) for the operator I+,k α,b and for the pairs of weights of the type (w, Mw), where w is any weight and M is a suitable one-sided maximal operator. We also prove that, for A+∞ weights, the operator I +,kα,b is controlled in the Lp (w) norm by a composition of the one-sided fractional maximal operator and the one-sided Hardy-Littlewood maximal operator iterated k times. These results improve those obtained by an immediate application of the corresponding two-sided results and provide a different way to obtain known results about the operators I +,kα,b. The same results can be obtained for the commutator of order k for the Riemann-Liouville fractional integral I -,kα,b.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bernardis, Ana Lucia; Lorente Dominguez, María; Sharp Two weight inequalities for commutators of Riemann-Liouville and Weyl fractional integral operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 61; 4; 8-2008; 449-475
Compartir
Altmétricas