Artículo
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis
Fecha de publicación:
12/2007
Editorial:
American Mathematical Society
Revista:
Transactions Of The American Mathematical Society
ISSN:
0002-9947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders.
Palabras clave:
Gaussian Measure
,
Maximal Functions
,
Singular Integrals
,
Hermie Expansions
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Aimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal; On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis; American Mathematical Society; Transactions Of The American Mathematical Society; 359; 5; 12-2007; 2137-2154
Compartir
Altmétricas