Artículo
Sequential design of dynamic experiments in modeling for optimization of biological processes
Fecha de publicación:
08/2009
Editorial:
Elsevier B.V.
Revista:
Computer Aided Chemical Engineering
ISSN:
1570-7946
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speed up the development and scaling up of innovative bioprocesses. A methodology for model-based design of dynamic experiments in modeling for optimization is proposed and successfully applied to the optimization of a fed-batch bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in an E. coli strain. A library of tendency models is used to increasingly bias bioreactor operating conditions towards an optimum. Parametric uncertainty of tendency models is iteratively reduced using Global Sensitivity Analysis (GSA). At each iteration, the ´most informative´ tendency model is used for designining the next dynamic experiment. Model selection is based on minimizing an error measure which separates parametric uncertainty from structural errors to trade-off exploration with exploitation.
Palabras clave:
Dynamic Experiments
,
Experimental Design
,
Modeling
,
Optimization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Martínez, Ernesto Carlos; Sequential design of dynamic experiments in modeling for optimization of biological processes; Elsevier B.V.; Computer Aided Chemical Engineering; 27; C; 8-2009; 369-374
Compartir
Altmétricas