Mostrar el registro sencillo del ítem

dc.contributor.author
Arredondo, Facundo  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2019-09-18T13:33:41Z  
dc.date.issued
2010-02  
dc.identifier.citation
Arredondo, Facundo; Martínez, Ernesto Carlos; Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 58; 1; 2-2010; 70-83  
dc.identifier.issn
0360-8352  
dc.identifier.uri
http://hdl.handle.net/11336/83826  
dc.description.abstract
Order acceptance under uncertainty is a critical decision-making problem at the interface between customer relationship management and production planning of order-driven manufacturing systems. In this work, a novel approach for simulation-based development and on-line adaptation of a policy for dynamic order acceptance under uncertainty in make-to-order manufacturing using average-reward reinforcement learning is proposed. Locally weighted regression is used to generalize the gain value of accepting or rejecting similar orders regarding attributes such as product mix, price, size and due date. The order acceptance policy is learned by classifying an arriving order as belonging either to the acceptance set or to the rejection set. For exploitation, only orders in the acceptance set must be chosen for shop-floor scheduling. For exploration some orders from the rejection set are also considered as candidates for acceptance. Comparisons made with different order acceptance heuristics highlight the effectiveness of the proposed ARLOA algorithm to maximize the average revenue obtained per unit cost of installed capacity whilst quickly responding to unknown variations in order arrival rates and attributes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Order Acceptance  
dc.subject
Reinforcement Learning  
dc.subject
Revenue Management  
dc.subject
Make-To-Orde Manufacturing  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-09-17T13:55:50Z  
dc.journal.volume
58  
dc.journal.number
1  
dc.journal.pagination
70-83  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Arredondo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Computers & Industrial Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cie.2009.08.005