Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing

Arredondo, Facundo; Martínez, Ernesto CarlosIcon
Fecha de publicación: 02/2010
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers & Industrial Engineering
ISSN: 0360-8352
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Order acceptance under uncertainty is a critical decision-making problem at the interface between customer relationship management and production planning of order-driven manufacturing systems. In this work, a novel approach for simulation-based development and on-line adaptation of a policy for dynamic order acceptance under uncertainty in make-to-order manufacturing using average-reward reinforcement learning is proposed. Locally weighted regression is used to generalize the gain value of accepting or rejecting similar orders regarding attributes such as product mix, price, size and due date. The order acceptance policy is learned by classifying an arriving order as belonging either to the acceptance set or to the rejection set. For exploitation, only orders in the acceptance set must be chosen for shop-floor scheduling. For exploration some orders from the rejection set are also considered as candidates for acceptance. Comparisons made with different order acceptance heuristics highlight the effectiveness of the proposed ARLOA algorithm to maximize the average revenue obtained per unit cost of installed capacity whilst quickly responding to unknown variations in order arrival rates and attributes.
Palabras clave: Order Acceptance , Reinforcement Learning , Revenue Management , Make-To-Orde Manufacturing
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.193Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/83826
DOI: http://dx.doi.org/10.1016/j.cie.2009.08.005
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Arredondo, Facundo; Martínez, Ernesto Carlos; Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 58; 1; 2-2010; 70-83
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES