Mostrar el registro sencillo del ítem

dc.contributor.author
Goloboff, Pablo Augusto  
dc.contributor.author
Pol, Diego  
dc.date.available
2019-09-05T19:11:32Z  
dc.date.issued
2007-12  
dc.identifier.citation
Goloboff, Pablo Augusto; Pol, Diego; On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-dcm3 vs. TNT; Oxford University Press; Systematic Biology; 56; 3; 12-2007; 485-495  
dc.identifier.issn
1063-5157  
dc.identifier.uri
http://hdl.handle.net/11336/82978  
dc.description.abstract
Roshan et al. recently described a ”divide-and-conquer” technique for parsimony analysis of large datasets, Rec-I-DCM3, and stated that it compares very favorably to results using the program TNT. Their technique is based on selecting subsets of taxa to create reduced datasets or subproblems, finding most-parsimonious trees for each reduced data set, recombining all parts together, and then performing global TBR swapping on the combined tree. Here, we contrast this approach to sectorial searches, a divide-and-conquer algorithm implemented in TNT. This algorithm also uses a guide tree to create subproblems, with the first-pass state sets of the nodes that join the selected sectors with the rest of the topology; this allows exact length calculations for the entire topology (that is, any solution N steps shorter than the original, for the reduced subproblem, must also be N steps shorter for the entire topology). We show here that, for sectors of similar size analyzed with the same search algorithms, subdividing datasets with sectorial searches produces better results than subdividing with Rec-I-DCM3. Roshan et al.’s claim that Rec-I-DCM3 outperforms thetechniques in TNT was caused by a poor experimental design and algorithmic settings used for the runs in TNT. In particular, for finding trees at or very close to the minimum known length of the analyzed datasets, TNT clearly outperforms Rec-I-DCM3. Finally, we show that the performance of Rec-I-DCM3 is bound by the efficiency of TBR implementation for the complete dataset, as this method behaves (after some number of iterations) as a technique for cyclic perturbations and improvements more than as a divide-and-conquer strategy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Phylogeny  
dc.subject
Algorithms  
dc.subject
Cladistics  
dc.subject
Tree Searches  
dc.subject.classification
Biología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-dcm3 vs. TNT  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-08-29T17:09:39Z  
dc.journal.volume
56  
dc.journal.number
3  
dc.journal.pagination
485-495  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Lawrence  
dc.description.fil
Fil: Goloboff, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina  
dc.description.fil
Fil: Pol, Diego. Museo Paleontológico Egidio Feruglio; Argentina  
dc.journal.title
Systematic Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1080/10635150701431905  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/sysbio/article-pdf/56/3/485/24203534/56-3-485.pdf