Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-dcm3 vs. TNT

Goloboff, Pablo AugustoIcon ; Pol, DiegoIcon
Fecha de publicación: 12/2007
Editorial: Oxford University Press
Revista: Systematic Biology
ISSN: 1063-5157
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología

Resumen

Roshan et al. recently described a ”divide-and-conquer” technique for parsimony analysis of large datasets, Rec-I-DCM3, and stated that it compares very favorably to results using the program TNT. Their technique is based on selecting subsets of taxa to create reduced datasets or subproblems, finding most-parsimonious trees for each reduced data set, recombining all parts together, and then performing global TBR swapping on the combined tree. Here, we contrast this approach to sectorial searches, a divide-and-conquer algorithm implemented in TNT. This algorithm also uses a guide tree to create subproblems, with the first-pass state sets of the nodes that join the selected sectors with the rest of the topology; this allows exact length calculations for the entire topology (that is, any solution N steps shorter than the original, for the reduced subproblem, must also be N steps shorter for the entire topology). We show here that, for sectors of similar size analyzed with the same search algorithms, subdividing datasets with sectorial searches produces better results than subdividing with Rec-I-DCM3. Roshan et al.’s claim that Rec-I-DCM3 outperforms thetechniques in TNT was caused by a poor experimental design and algorithmic settings used for the runs in TNT. In particular, for finding trees at or very close to the minimum known length of the analyzed datasets, TNT clearly outperforms Rec-I-DCM3. Finally, we show that the performance of Rec-I-DCM3 is bound by the efficiency of TBR implementation for the complete dataset, as this method behaves (after some number of iterations) as a technique for cyclic perturbations and improvements more than as a divide-and-conquer strategy.
Palabras clave: Phylogeny , Algorithms , Cladistics , Tree Searches
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 507.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/82978
DOI: https://dx.doi.org/10.1080/10635150701431905
URL: https://academic.oup.com/sysbio/article-pdf/56/3/485/24203534/56-3-485.pdf
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Goloboff, Pablo Augusto; Pol, Diego; On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-dcm3 vs. TNT; Oxford University Press; Systematic Biology; 56; 3; 12-2007; 485-495
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES