Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Kewei
dc.contributor.author
Crooks, Elaine
dc.contributor.author
Orlando, Antonio
dc.date.available
2019-08-07T12:44:01Z
dc.date.issued
2018-10
dc.identifier.citation
Zhang, Kewei; Crooks, Elaine; Orlando, Antonio; Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Applications to contour lines, sparse data, and inpainting; Society for Industrial and Applied Mathematics Publications; SIAM Journal on Imaging Sciences; 11; 4; 10-2018; 2368-2428
dc.identifier.uri
http://hdl.handle.net/11336/81062
dc.description.abstract
This paper is concerned with applications of the theory of approximation and interpolation based on compensated convex transforms developed in [K. Zhang, E. Crooks, and A. Orlando, SIAM J. Math. Anal., 48 (2016), pp. 4126--4154]. We apply our methods to (i) surface reconstruction starting from the knowledge of finitely many level sets (or ``contour lines""); (ii) scattered data approximation; (iii) image inpainting. For (i) and (ii) our methods give interpolations. For the case of finite sets (scattered data), in particular, our approximations provide a natural triangulation and piecewise affine interpolation. Prototype examples of explicitly calculated approximations and inpainting results are presented for both finite and compact sets. We also show numerical experiments for applications of our methods to high density salt & pepper noise reduction in image processing, for image inpainting, and for approximation and interpolations of continuous functions sampled on finitely many level sets and on scattered points.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics Publications
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Approximation
dc.subject
Compensated Convex Transforms
dc.subject
Contour Lines
dc.subject
Convex Density Radius
dc.subject
Hausdorff Stability
dc.subject
High Density Salt \& Pepper Noise Reduction
dc.subject
Image Inpainting
dc.subject
Inpainting
dc.subject
Interpolation
dc.subject
Maximum Principle
dc.subject
Scattered Data
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Applications to contour lines, sparse data, and inpainting
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-08-06T18:14:52Z
dc.identifier.eissn
1936-4954
dc.journal.volume
11
dc.journal.number
4
dc.journal.pagination
2368-2428
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Zhang, Kewei. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido
dc.description.fil
Fil: Crooks, Elaine. Swansea University; Reino Unido
dc.description.fil
Fil: Orlando, Antonio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.journal.title
SIAM Journal on Imaging Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1137/17M116152X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/17M116152X
Archivos asociados