Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Applications to contour lines, sparse data, and inpainting

Zhang, Kewei; Crooks, Elaine; Orlando, AntonioIcon
Fecha de publicación: 10/2018
Editorial: Society for Industrial and Applied Mathematics Publications
Revista: SIAM Journal on Imaging Sciences
e-ISSN: 1936-4954
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Ciencias de la Computación

Resumen

This paper is concerned with applications of the theory of approximation and interpolation based on compensated convex transforms developed in [K. Zhang, E. Crooks, and A. Orlando, SIAM J. Math. Anal., 48 (2016), pp. 4126--4154]. We apply our methods to (i) surface reconstruction starting from the knowledge of finitely many level sets (or ``contour lines""); (ii) scattered data approximation; (iii) image inpainting. For (i) and (ii) our methods give interpolations. For the case of finite sets (scattered data), in particular, our approximations provide a natural triangulation and piecewise affine interpolation. Prototype examples of explicitly calculated approximations and inpainting results are presented for both finite and compact sets. We also show numerical experiments for applications of our methods to high density salt & pepper noise reduction in image processing, for image inpainting, and for approximation and interpolations of continuous functions sampled on finitely many level sets and on scattered points.
Palabras clave: Approximation , Compensated Convex Transforms , Contour Lines , Convex Density Radius , Hausdorff Stability , High Density Salt \& Pepper Noise Reduction , Image Inpainting , Inpainting , Interpolation , Maximum Principle , Scattered Data
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.320Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/81062
DOI: https://dx.doi.org/10.1137/17M116152X
URL: https://epubs.siam.org/doi/10.1137/17M116152X
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Zhang, Kewei; Crooks, Elaine; Orlando, Antonio; Compensated convexity methods for approximations and interpolations of sampled functions in euclidean spaces: Applications to contour lines, sparse data, and inpainting; Society for Industrial and Applied Mathematics Publications; SIAM Journal on Imaging Sciences; 11; 4; 10-2018; 2368-2428
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES