Mostrar el registro sencillo del ítem

dc.contributor
Acosta Rodriguez, Gabriel  
dc.contributor.author
Mastroberti Bersetche, Francisco Vicente  
dc.date.available
2019-07-23T20:20:16Z  
dc.date.issued
2019-03-06  
dc.identifier.citation
Mastroberti Bersetche, Francisco Vicente; Acosta Rodriguez, Gabriel; Métodos numéricos para problemas no locales de evolución; 6-3-2019  
dc.identifier.uri
http://hdl.handle.net/11336/80087  
dc.description.abstract
This work introduces and analyzes a finite element scheme forevolution problems involving fractional-in-time and in-space differentiation operators up to order two. The left-sided fractional-order derivative in time weconsider is employed to represent memory effects, while a nonlocal differentiation operator in space accounts for long-range dispersion processes. We discusswell-posedness and obtain regularity estimates for the evolution problems under consideration. The discrete scheme we develop is based on piecewise linearelements for the space variable and a convolution quadrature for the time component. We illustrate the method?s performance with numerical experimentsin one- and two-dimensional domains.  
dc.description.abstract
The aim of this work is to study numerical approximations for evolution problems of the form C ∂ α t u + (−∆)su = f in Ω × (0, T), where (−∆)s stands for the fractional Laplacian operator in its integral form and C ∂ α t u(x, t) represents the Caputo derivative. To be more precise, (−∆)su(x) = C(n, s) p.v. ˆ Rn u(x) − u(y) |x − y| n+2s dy, and C ∂ α t u(x, t) = ( 1 Γ(k−α) ´ t 0 1 (t−r)α−k+1 ∂ ku ∂rk (x, r) dr if k − 1 < α < k, k ∈ N, ∂ ku ∂tk u(x, t) if α = k ∈ N. We deal with existence, uniqueness and regularity of solutions in the linear context (i.e. f = f(x, t)). The cases under study include fractional counterparts of the standard diffusion and wave models. Linear finite elements are used for the spatial variable and convolution quadrature techniques for handling the time fractional operator. Error bounds, uniform in the discretization parameters for values of t away from zero, are given. These results are extended to the semi-linear case with f(u) = u − u 3 appearing in the classical Allen-Cahn equations modeling phase separation for binary alloys. Additionally, the asymptotic behaviour of the solutions for s → 0 is studied in this particular context. Implementation details, particularly for the finite element method involving full fractional stiffness matrices and numerical quadratures for singular kernels, are carefully documented  
dc.format
application/pdf  
dc.language.iso
eng  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Laplaciano Fraccionario  
dc.subject
Derivada de Caputo  
dc.subject
Método de Elementos Finitos  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Métodos numéricos para problemas no locales de evolución  
dc.title
Numerical methods for non-local evolution problems  
dc.type
info:eu-repo/semantics/doctoralThesis  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:ar-repo/semantics/tesis doctoral  
dc.date.updated
2019-06-28T14:56:39Z  
dc.description.fil
Fil: Mastroberti Bersetche, Francisco Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://cms.dm.uba.ar/academico/carreras/doctorado/Tesis%20mastroberti.pdf  
dc.conicet.grado
Universitario de posgrado/doctorado  
dc.conicet.titulo
Doctor en Ciencias Matemáticas  
dc.conicet.rol
Autor  
dc.conicet.rol
Director  
dc.conicet.otorgante
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática