Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Tesis doctoral

Métodos numéricos para problemas no locales de evolución

Título: Numerical methods for non-local evolution problems
Mastroberti Bersetche, Francisco VicenteIcon
Director: Acosta Rodriguez, GabrielIcon
Fecha de publicación: 06/03/2019
Idioma: Inglés
Clasificación temática:
Matemática Aplicada

Resumen

 
This work introduces and analyzes a finite element scheme forevolution problems involving fractional-in-time and in-space differentiation operators up to order two. The left-sided fractional-order derivative in time weconsider is employed to represent memory effects, while a nonlocal differentiation operator in space accounts for long-range dispersion processes. We discusswell-posedness and obtain regularity estimates for the evolution problems under consideration. The discrete scheme we develop is based on piecewise linearelements for the space variable and a convolution quadrature for the time component. We illustrate the method?s performance with numerical experimentsin one- and two-dimensional domains.
 
The aim of this work is to study numerical approximations for evolution problems of the form C ∂ α t u + (−∆)su = f in Ω × (0, T), where (−∆)s stands for the fractional Laplacian operator in its integral form and C ∂ α t u(x, t) represents the Caputo derivative. To be more precise, (−∆)su(x) = C(n, s) p.v. ˆ Rn u(x) − u(y) |x − y| n+2s dy, and C ∂ α t u(x, t) = ( 1 Γ(k−α) ´ t 0 1 (t−r)α−k+1 ∂ ku ∂rk (x, r) dr if k − 1 < α < k, k ∈ N, ∂ ku ∂tk u(x, t) if α = k ∈ N. We deal with existence, uniqueness and regularity of solutions in the linear context (i.e. f = f(x, t)). The cases under study include fractional counterparts of the standard diffusion and wave models. Linear finite elements are used for the spatial variable and convolution quadrature techniques for handling the time fractional operator. Error bounds, uniform in the discretization parameters for values of t away from zero, are given. These results are extended to the semi-linear case with f(u) = u − u 3 appearing in the classical Allen-Cahn equations modeling phase separation for binary alloys. Additionally, the asymptotic behaviour of the solutions for s → 0 is studied in this particular context. Implementation details, particularly for the finite element method involving full fractional stiffness matrices and numerical quadratures for singular kernels, are carefully documented
 
Palabras clave: Laplaciano Fraccionario , Derivada de Caputo , Método de Elementos Finitos
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.951Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/80087
URL: http://cms.dm.uba.ar/academico/carreras/doctorado/Tesis%20mastroberti.pdf
Colecciones
Tesis(IMAS)
Tesis de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Mastroberti Bersetche, Francisco Vicente; Acosta Rodriguez, Gabriel; Métodos numéricos para problemas no locales de evolución; 6-3-2019
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES