Artículo
New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory
Lerner, Andrei K.; Ombrosi, Sheldy Javier
; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo
Fecha de publicación:
01/03/2009
Editorial:
Academic Press Inc Elsevier Science
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Torres, Rodolfo; Trujillo Gonzalez, Rodrigo; New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory; Academic Press Inc Elsevier Science; Advances in Mathematics; 220; 4; 1-3-2009; 1222-1264
Compartir
Altmétricas