Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, Elsa Adriana  
dc.contributor.author
Platzeck, Maria Ines  
dc.date.available
2019-06-25T12:48:33Z  
dc.date.issued
2002-03-15  
dc.identifier.citation
Fernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-344  
dc.identifier.issn
0021-8693  
dc.identifier.uri
http://hdl.handle.net/11336/78775  
dc.description.abstract
Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Modules  
dc.subject
Artin Algebras  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-12T14:21:45Z  
dc.journal.volume
249  
dc.journal.number
2  
dc.journal.pagination
326-344  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; Argentina  
dc.description.fil
Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Journal of Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301990568  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1006/jabr.2001.9056