Artículo
An energy-stable convex splitting for the phase-field crystal equation
Fecha de publicación:
07/2015
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Computers & Structures
ISSN:
0045-7949
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Vignal, P.; Dalcin, Lisandro Daniel; Brown, D.L.; Collier, N.; Calo, V.M.; An energy-stable convex splitting for the phase-field crystal equation; Pergamon-Elsevier Science Ltd; Computers & Structures; 158; 7-2015; 355-368
Compartir
Altmétricas