Mostrar el registro sencillo del ítem

dc.contributor.author
Cendra, Hernan  
dc.contributor.author
Marsden, Jerrold E.  
dc.contributor.author
Ratiu, Tudor Stefan  
dc.date.available
2019-06-18T20:07:36Z  
dc.date.issued
2001  
dc.identifier.citation
Cendra, Hernan; Marsden, Jerrold E.; Ratiu, Tudor Stefan; Lagrangian Reduction by Stages; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 152; 722; 2001; 1-108  
dc.identifier.issn
0065-9266  
dc.identifier.uri
http://hdl.handle.net/11336/78488  
dc.description.abstract
This paper studies the geometry of the reduction of Lagrangian sys-tems with symmetry in a way that allows the reduction process to berepeated; that is, it develops a context for Lagrangian reduction bystages. The Lagrangian reduction procedure focusses on the geometryof variational structures and how to reduce them. This philosophy iswell known for the classical cases, such as those of Routh (where thesymmetry group is Abelian) and the Euler{Poincaré equations (for thecase in which the con guration space is a Lie group).The context established for this theory is a Lagrangian analogue ofthe bundle picture on the Hamiltonian side. In this picture, a cate-gory is developed that includes, as a special case, the realization of thequotient of a tangent bundle as the Whitney sum of the tangent of thequotient bundle with the associated adjoint bundle. The elements of this new category, called the Lagrange-Poincaré category, have enoughgeometric structure so that the category is stable under the procedureof Lagrangian reduction. Thus, reduction may be repeated, giving thedesired context for reduction by stages.We also give an intrinsic and geometric way of writing the reducedequations, called the Lagrange-Poincaré equations, using covariant de-rivatives and connections. In addition, the context includes the inter-pretation of cocycles as curvatures of connections and is general enoughto include interesting situations involving both semidirect products andcentral extensions. Examples are given to illustrate the general theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Poincare Equations  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lagrangian Reduction by Stages  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-12T14:21:17Z  
dc.identifier.eissn
1947–6221  
dc.journal.volume
152  
dc.journal.number
722  
dc.journal.pagination
1-108  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina  
dc.description.fil
Fil: Marsden, Jerrold E.. California Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Ratiu, Tudor Stefan. Ecole Polytechnique Federale de Lausanne; Suiza  
dc.journal.title
Memoirs Of The American Mathematical Society (ams)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/memo/0722/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/memo/0722