Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Lagrangian Reduction by Stages

Cendra, HernanIcon ; Marsden, Jerrold E.; Ratiu, Tudor Stefan
Fecha de publicación: 2001
Editorial: American Mathematical Society
Revista: Memoirs Of The American Mathematical Society (ams)
ISSN: 0065-9266
e-ISSN: 1947–6221
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

This paper studies the geometry of the reduction of Lagrangian sys-tems with symmetry in a way that allows the reduction process to berepeated; that is, it develops a context for Lagrangian reduction bystages. The Lagrangian reduction procedure focusses on the geometryof variational structures and how to reduce them. This philosophy iswell known for the classical cases, such as those of Routh (where thesymmetry group is Abelian) and the Euler{Poincaré equations (for thecase in which the con guration space is a Lie group).The context established for this theory is a Lagrangian analogue ofthe bundle picture on the Hamiltonian side. In this picture, a cate-gory is developed that includes, as a special case, the realization of thequotient of a tangent bundle as the Whitney sum of the tangent of thequotient bundle with the associated adjoint bundle. The elements of this new category, called the Lagrange-Poincaré category, have enoughgeometric structure so that the category is stable under the procedureof Lagrangian reduction. Thus, reduction may be repeated, giving thedesired context for reduction by stages.We also give an intrinsic and geometric way of writing the reducedequations, called the Lagrange-Poincaré equations, using covariant de-rivatives and connections. In addition, the context includes the inter-pretation of cocycles as curvatures of connections and is general enoughto include interesting situations involving both semidirect products andcentral extensions. Examples are given to illustrate the general theory.
Palabras clave: Poincare Equations
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 609.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/78488
URL: http://www.ams.org/books/memo/0722/
DOI: http://dx.doi.org/10.1090/memo/0722
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cendra, Hernan; Marsden, Jerrold E.; Ratiu, Tudor Stefan; Lagrangian Reduction by Stages; American Mathematical Society; Memoirs Of The American Mathematical Society (ams); 152; 722; 2001; 1-108
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES