Mostrar el registro sencillo del ítem

dc.contributor.author
Grillo, Sergio Daniel  
dc.contributor.author
Padrón, Edith  
dc.date.available
2019-06-12T18:55:16Z  
dc.date.issued
2016-12-01  
dc.identifier.citation
Grillo, Sergio Daniel; Padrón, Edith; A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds; Elsevier Science; Journal Of Geometry And Physics; 110; 1-12-2016; 101-129  
dc.identifier.issn
0393-0440  
dc.identifier.uri
http://hdl.handle.net/11336/78115  
dc.description.abstract
In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the framework of general symplectic, Poisson and almost-Poisson manifolds (including some approaches to a Hamilton–Jacobi Theory for nonholonomic systems). Given a dynamical system, we show that every complete solution of its related Hamilton–Jacobi Equation (HJE) gives rise to a set of first integrals, and vice versa. From that, and in the context of symplectic and Poisson manifolds, a deep connection between the HJE and the (non)commutative integrability notion, and consequently the integrability by quadratures, is established. Moreover, in the same context, we find conditions on the complete solutions of the HJE that also ensures integrability by quadratures, but they are weaker than those related to the (non)commutative integrability. Examples are developed along all the paper in order to illustrate the theoretical results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Hamilton–Jacobi Equations  
dc.subject
Integrable Systems  
dc.subject
Poisson Manifold  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-11T15:04:48Z  
dc.journal.volume
110  
dc.journal.pagination
101-129  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Padrón, Edith. Universidad de La Laguna; España. Consejo Superior de Investigaciones Científicas; España  
dc.journal.title
Journal Of Geometry And Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2016.07.010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016301760  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.03121