Mostrar el registro sencillo del ítem
dc.contributor.author
Grillo, Sergio Daniel
dc.contributor.author
Padrón, Edith
dc.date.available
2019-06-12T18:55:16Z
dc.date.issued
2016-12-01
dc.identifier.citation
Grillo, Sergio Daniel; Padrón, Edith; A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds; Elsevier Science; Journal Of Geometry And Physics; 110; 1-12-2016; 101-129
dc.identifier.issn
0393-0440
dc.identifier.uri
http://hdl.handle.net/11336/78115
dc.description.abstract
In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the framework of general symplectic, Poisson and almost-Poisson manifolds (including some approaches to a Hamilton–Jacobi Theory for nonholonomic systems). Given a dynamical system, we show that every complete solution of its related Hamilton–Jacobi Equation (HJE) gives rise to a set of first integrals, and vice versa. From that, and in the context of symplectic and Poisson manifolds, a deep connection between the HJE and the (non)commutative integrability notion, and consequently the integrability by quadratures, is established. Moreover, in the same context, we find conditions on the complete solutions of the HJE that also ensures integrability by quadratures, but they are weaker than those related to the (non)commutative integrability. Examples are developed along all the paper in order to illustrate the theoretical results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Hamilton–Jacobi Equations
dc.subject
Integrable Systems
dc.subject
Poisson Manifold
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-11T15:04:48Z
dc.journal.volume
110
dc.journal.pagination
101-129
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Grillo, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.description.fil
Fil: Padrón, Edith. Universidad de La Laguna; España. Consejo Superior de Investigaciones Científicas; España
dc.journal.title
Journal Of Geometry And Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2016.07.010
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016301760
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.03121
Archivos asociados