Artículo
A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds
Fecha de publicación:
01/12/2016
Editorial:
Elsevier Science
Revista:
Journal Of Geometry And Physics
ISSN:
0393-0440
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the framework of general symplectic, Poisson and almost-Poisson manifolds (including some approaches to a Hamilton–Jacobi Theory for nonholonomic systems). Given a dynamical system, we show that every complete solution of its related Hamilton–Jacobi Equation (HJE) gives rise to a set of first integrals, and vice versa. From that, and in the context of symplectic and Poisson manifolds, a deep connection between the HJE and the (non)commutative integrability notion, and consequently the integrability by quadratures, is established. Moreover, in the same context, we find conditions on the complete solutions of the HJE that also ensures integrability by quadratures, but they are weaker than those related to the (non)commutative integrability. Examples are developed along all the paper in order to illustrate the theoretical results.
Palabras clave:
Hamilton–Jacobi Equations
,
Integrable Systems
,
Poisson Manifold
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Grillo, Sergio Daniel; Padrón, Edith; A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds; Elsevier Science; Journal Of Geometry And Physics; 110; 1-12-2016; 101-129
Compartir
Altmétricas