Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds

Grillo, Sergio DanielIcon ; Padrón, Edith
Fecha de publicación: 01/12/2016
Editorial: Elsevier Science
Revista: Journal Of Geometry And Physics
ISSN: 0393-0440
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the framework of general symplectic, Poisson and almost-Poisson manifolds (including some approaches to a Hamilton–Jacobi Theory for nonholonomic systems). Given a dynamical system, we show that every complete solution of its related Hamilton–Jacobi Equation (HJE) gives rise to a set of first integrals, and vice versa. From that, and in the context of symplectic and Poisson manifolds, a deep connection between the HJE and the (non)commutative integrability notion, and consequently the integrability by quadratures, is established. Moreover, in the same context, we find conditions on the complete solutions of the HJE that also ensures integrability by quadratures, but they are weaker than those related to the (non)commutative integrability. Examples are developed along all the paper in order to illustrate the theoretical results.
Palabras clave: Hamilton–Jacobi Equations , Integrable Systems , Poisson Manifold
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 541.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/78115
DOI: http://dx.doi.org/10.1016/j.geomphys.2016.07.010
URL: https://www.sciencedirect.com/science/article/pii/S0393044016301760
URL: https://arxiv.org/abs/1512.03121
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Grillo, Sergio Daniel; Padrón, Edith; A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds; Elsevier Science; Journal Of Geometry And Physics; 110; 1-12-2016; 101-129
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES