Mostrar el registro sencillo del ítem

dc.contributor.author
Quintero Rincón, Antonio  
dc.contributor.author
Pereyra, M.  
dc.contributor.author
D'Giano, Carlos  
dc.contributor.author
Batatia, H.  
dc.contributor.author
Risk, Marcelo  
dc.date.available
2019-05-24T17:31:54Z  
dc.date.issued
2017-04  
dc.identifier.citation
Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-16  
dc.identifier.issn
1680-0737  
dc.identifier.uri
http://hdl.handle.net/11336/77054  
dc.description.abstract
This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Epilepsy  
dc.subject
Generalized Gaussian Distribution  
dc.subject
Kullback-Leibler Divergence  
dc.subject
Multivariate Wavelet Decomposition  
dc.subject
Seizure/Non-Seizure  
dc.subject.classification
Otras Medicina Básica  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-05-23T14:31:17Z  
dc.journal.volume
60  
dc.journal.pagination
13-16  
dc.journal.pais
Singapur  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Pereyra, M.. University Of Bristol; Reino Unido  
dc.description.fil
Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.description.fil
Fil: Batatia, H.. Universite de Toulouse; Francia  
dc.description.fil
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina  
dc.journal.title
Ifmbe Proceedings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-981-10-4086-3_4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-981-10-4086-3_4