Mostrar el registro sencillo del ítem
dc.contributor.author
Quintero Rincón, Antonio
dc.contributor.author
Pereyra, M.
dc.contributor.author
D'Giano, Carlos
dc.contributor.author
Batatia, H.
dc.contributor.author
Risk, Marcelo
dc.date.available
2019-05-24T17:31:54Z
dc.date.issued
2017-04
dc.identifier.citation
Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-16
dc.identifier.issn
1680-0737
dc.identifier.uri
http://hdl.handle.net/11336/77054
dc.description.abstract
This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Epilepsy
dc.subject
Generalized Gaussian Distribution
dc.subject
Kullback-Leibler Divergence
dc.subject
Multivariate Wavelet Decomposition
dc.subject
Seizure/Non-Seizure
dc.subject.classification
Otras Medicina Básica
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-05-23T14:31:17Z
dc.journal.volume
60
dc.journal.pagination
13-16
dc.journal.pais
Singapur
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Pereyra, M.. University Of Bristol; Reino Unido
dc.description.fil
Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Batatia, H.. Universite de Toulouse; Francia
dc.description.fil
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
dc.journal.title
Ifmbe Proceedings
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-981-10-4086-3_4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-981-10-4086-3_4
Archivos asociados