Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence

Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, MarceloIcon
Fecha de publicación: 04/2017
Editorial: Springer Verlag
Revista: Ifmbe Proceedings
ISSN: 1680-0737
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Medicina Básica

Resumen

This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure.
Palabras clave: Epilepsy , Generalized Gaussian Distribution , Kullback-Leibler Divergence , Multivariate Wavelet Decomposition , Seizure/Non-Seizure
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 117.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/77054
URL: https://link.springer.com/chapter/10.1007%2F978-981-10-4086-3_4
DOI: https://dx.doi.org/10.1007/978-981-10-4086-3_4
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES